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1. INTRODUCTION
In spite of the impressive gains in understanding the de-
tails of image formation in high-numerical-aperture
(high-NA) conventional and confocal optical microscopes
with point objects and planar reflectors,1–3 the imaging of
spherical objects is still a topic of intense theoretical and
experimental interest. One way to gauge the difficulty in
developing a complete, vector model that describes image
formation for general three-dimensional objects is to real-
ize that recently developed models describing the axial
resolution4 and the polarization sensitivity5 of both confo-
cal and conventional microscopes are based on either pla-
nar or point objects.

Understanding the complexities of image formation
with spherical objects would be particularly significant for
the following reasons: Scientists routinely track the
movement of spherical tracer particles to help elucidate
the behavior of complex systems,6,7 and nearly spherical
objects, such as red blood cells8 and aerosol droplets,9,10

are ubiquitous.
Attempts to model image formation with high-NA opti-

cal microscopes with arbitrary spherical objects have of-
ten required simplifying assumptions. For example,
Weise et al.11 recently presented a model to describe the
image formed in a reflection confocal microscope; in addi-
tion to assuming that the sphere was perfectly reflecting,
they used far-field calculations and limited the analysis to
scalar predictions. Nevertheless, they showed good
agreement with an experimental observation using a
glass sphere glued to a microscope slide. It has been
noted, however, that the optical imaging at high NA of
real (e.g., biological) samples is seldom ideal, and there-
0740-3232/2000/071202-12$15.00 ©
fore experimental observations are required to character-
ize the three-dimensional image formation.12

In this paper we examine the image of a spherical par-
ticle, illuminated by a plane wave, which moves in a fluid
medium through the fixed focus of a conventional optical
microscope. We refer to this as an ‘‘image’’; however, our
model predicts the scattering pattern that would be ob-
served with an array detector in the image plane of the
microscope and includes the effects of the optical system
and the interface upon the propagation of the scattered
wave front from the spherical particle. Although authors
have modeled the effect of a high-NA lens on a converging
electromagnetic wave13–15 and they have examined the ef-
fect of an interface between the lens and the focus, these
results are not directly applicable to the prediction of the
image formed in a transmitted-light conventional micro-
scope. To verify the scalar aspects of our model, we mea-
sured the scattering from spherical polystyrene particles
in a fluid and directly compared it with model predictions.
We have also used the model to predict the location of a
particle in a three-dimensional flow in order to determine
all three components of the fluid velocity.16

2. OPTICAL MODEL
The optical model that predicts the characteristics of the
image can be separated into a sequence of elements.
These elements include scattering from a spherical par-
ticle, refraction at a fluid–air interface, collection with a
high-NA lens, and diffraction from the lens to the image
plane.
2000 Optical Society of America
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Figure 1 represents schematically the experimental ge-
ometry. A spherical particle of radius a and index of re-
fraction np is immersed in a fluid of index of refraction nf ,
which is contained between two glass walls. The model
assumes that the focus of the optical system is fixed and
that the particle’s location along the optical axis may
change. We further assume that the fluid and the glass
are index matched so effectively that there is a single in-
terface with refractive index nf , and therefore we refer to
this as the interface. The scattered light is collected with
a high-NA objective lens, and the intensity is measured at
the image plane. In essence, we successively compute
the electric and magnetic fields over four key xy planes,
which are perpendicular to the optical (z) axis. The
model has the following six elements, each of which is dis-
cussed in detail in Subsections 2.A–2.F:

1. Evaluate the scattered electric and magnetic fields
at the fluid side of the interface (plane 12). These are
the fields scattered by the spherical particle.

2. Calculate the transmission of the scattered fields to
the air side of the interface (plane 11).

3. Propagate the scattered fields from the interface to
the entrance pupil (plane 2) of the objective lens.

4. Without adopting a paraxial approximation, calcu-
late the polarization rotation, the phase transformation,
and the scaling of the scattered fields from the entrance
pupil to the exit pupil (plane 3) of the lens.

5. Propagate the incident electromagnetic fields to the
exit pupil (plane 3) of the lens.

6. Calculate the diffraction of the superposed incident
and scattered fields (the total field) from the exit pupil to
the image plane (plane 4). Compute the irradiance at the
image plane.

A. Scattered Field at the Interface
In this subsection we review some salient features of the
scattering of electromagnetic plane waves from arbitrary-
size, homogeneous spheres in a medium with arbitrary
but homogeneous index of refraction. The Cartesian co-

Fig. 1. Schematic representing the model geometry. A par-
ticle, with index of refraction np and radius a, is in a fluid me-
dium with index nf . The particle’s position along the optical
axis may change by an amount d with respect to a reference dis-
tance z1 from the fluid–air interface. The quantities z1 and z2
are determined from the experimental parameters by using z1
5 zf 1 d and z2 5 f 2 zf /nf , where zf is measured, f is the focal
length, and positive d indicates a greater distance from plane 1.
The electromagnetic fields are successively computed over the
four labeled planes.
ordinate system, with positive z directed along the optical
axis from the particle to the image, is centered at the scat-
tering sphere (Fig. 2).

All the electromagnetic fields are assumed to be time
harmonic, of the form

E~x, t ! 5 Re@E~x!exp~2ivt !#. (1)

E(x) is a transverse solution to the vector Helmholtz
equation ¹2E 1 kE 5 0. Corresponding to each given
expression for the electric field E is a similar expression
for the magnetic field H. The wave vector is denoted by
k, and k 5 iki 5 2p/l is the wave number, with l as the
wavelength in the medium.

The incident illumination Ei is assumed to be a mono-
chromatic spatially coherent linearly polarized plane
wave traveling along the (positive z) direction of the opti-
cal axis. Without loss of generality, we take the polariza-
tion along the x axis. Therefore

Ei 5 E0ûx exp ikz, (2)

where ûx is the unit vector in the x direction.
The incident illumination is scattered by a sphere of ra-

dius a and index of refraction np surrounded by a medium
of index of refraction nf . An analytic expression for the
scattering in this geometry (given by the solution to the
vector Helmholtz equation with appropriate boundary
conditions) was given by Mie in 1908.17–19

The total field E external to the particle is a superposi-
tion of the incident and scattered fields:

E 5 Ei 1 Es . (3)

The incident field Ei can be written in terms of compo-
nents in the directions ûii and ûi' with respect to the scat-
tering plane. With (r, u, f) as the standard spherical co-
ordinate representation for (x, y, z), the basis vectors ûii

and ûi' exhibit f dependence (Fig. 2):

ûii~ f! 5 cos f ûx 1 sin f ûy , (4a)

ûi'~ f! 5 2sin f ûx 1 cos f ûy . (4b)

The incident field is

Ei 5 ~exp ikz !@~E0 cos f!ûii~ f! 2 ~E0 sin f!ûi'~ f!#

[ ~exp ikz !@Eii~ f!ûii~ f! 1 Ei'~ f!ûi'~ f!#. (5)

For the scattered field (Fig. 2), the basis set is

ûsi~u, f! [ ûu 5 cos u cos fûx 1 cos u sin f ûy

2 sin u ûz , (6a)

Fig. 2. Geometry of the basis vectors ûsi , ûs' , ûsr , ûii , and
ûi' .
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ûs'~ f! [ ûf 5 2sin f ûx 1 cos f ûy , (6b)

ûsr~u, f! [ ûr 5 sin u cos f ûx 1 sin u sin f ûy

1 cos u ûz , (6c)

where ûu , ûf , and ûr are the standard unit vectors in
spherical coordinates. The field scattered from the par-
ticle becomes

Es~r, u, f! 5 Esi~r, u, f!ûsi~u, f! 1 Es'~r, u, f!ûs'~ f!

1 Esr~r, u, f!ûsr~u, f!. (7)

A representation of Es(r, u, f) in terms of vector
spherical harmonics is presented in Appendix A. In Ap-
pendix B the asymptotic values of the harmonic functions
are evaluated to determine the accuracy of the commonly
employed far-field approximations. As shown in Appen-
dix B, the radial component of the scattered electric field
is less than 1% of the transverse components and may be
dropped without incurring a significant error. Equiva-
lently, the transverse components of the Poynting vector
are small compared with the radial component, so effec-
tively, Es propagates radially. Therefore Es reduces to

Es~r, u, f! 5 Esi~r, u, f!ûsi~u, f! 1 Es'~r, u, f!ûs'~ f!.

(8)
The coefficients Esi(r, u, f) and Es'(r, u, f) are given by

Esi~r, u, f! 5 S i~r, u!Eii~ f!, (9a)

Es'~r, u, f! 5 S'~r, u!Ei'~ f!, (9b)

where S i(r, u) and S'(r, u) are the elements of the near-
field scattering amplitude matrix. Note that the near-
field scattering amplitudes must be used because a far-
field approximation yields an error as large as 7%
(Appendix B). In essence, the interface, at a distance z1
from the particle, is far enough away from the particle
such that the radial component has decayed enough to be
neglected, but it is not far enough away for the substitu-
tion of (2i)n(exp ikr)/ikr for the spherical Hankel function
hn

(1)(kr) to be valid.

B. Effect of the Interface
In the absence of the interface between the spherical par-
ticle and the lens, the appropriate approach to determin-
ing the fields over the entrance pupil would be to evaluate
the Mie field directly on the entrance pupil.9 Because of
the interface, however, we must account for refraction.
We adopt a ray approach to propagate the field from the
interface to the entrance pupil.

The ray approach is justified because the scattered
electric and magnetic fields behave asymptotically like
outgoing spherical waves with angular dependence.17

Because the entrance pupil is in the far zone, the argu-
ments in Section 3.2.2 of Ref. 20 imply that only one plane
wave of the angular spectrum representation will contrib-
ute to the asymptotic behavior of the field at a particular
point on the entrance pupil. We assume that Fresnel for-
mulas are applicable to each plane-wave component at
the interface. This approach also accounts for the polar-
ization rotation of the refracted ray, preserving the vecto-
rial nature of the field.21
As indicated in the subsection on numerical implemen-
tation (Subsection 2.G), the location of the discrete rays
used to propagate the scattered field to the entrance pupil
of the lens is ultimately governed by the grid used at the
exit pupil for the numerical evaluation of the highly oscil-
latory Fresnel diffraction integral. In turn, the grid on
the exit pupil is related to the grid on the image plane
that corresponds to the pixels in the array detector. The
determination of the field over these key planes will be
provided in subsequent subsections.

Figure 3 shows the effect of refraction on a ray centered
on the particle. The propagating scattered field encoun-
ters the interface (plane 1). Polar coordinates on this
plane are denoted by r1 and f, where

r1 5 z1 tan u, (10)

with z1 denoting the distance from the particle center to
the interface. With this notation the scattered field Es12

on the fluid side of the interface may be expressed as

Es12~r1 , f! 5 Es(Ar1
2 1 z1

2,tan21~r1 /z1!,f). (11)

At the interface the scattered field is refracted and
propagates in a new direction b, which is given by Snell’s
law:

nf sin u 5 sin b. (12)

On the air side of the interface, the scattered field Es11

may be expressed as

Es11~r1 , f! 5 Esi11~r1 , f!ûsi~b, f!

1 Es'11~r1 , f!ûs'~ f!. (13)

With the use of Eqs. (9), the coefficients Esi11(r1 , f) and
Es'11(r1 , f) are given by

Esi11~r1 , f! 5 t i Esi12~r1 , f! 5 t i S i Eii~ f!, (14a)

Es'11~r1 , f! 5 t'Es'12~r1 , f! 5 t'S'Ei'~ f!, (14b)

where t i and t' are the Fresnel coefficients for the trans-
mitted field at the interface21:

t i 5
2 cos unf

cos b 1 nf cos u
, (15a)

t' 5
2 cos unf

cos u 1 nf cos b
. (15b)

Upon refraction at the interface, the parallel component
of the scattered field has rotated from the ûsi(u, f) direc-
tion to the ûsi(b, f) direction, but the direction of the per-
pendicular component remains unchanged. The ampli-

Fig. 3. Geometry of the fluid–air interface and the parameters
that govern the lens transformation.
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tudes of the transverse magnetic and transverse electric
components Esi12(r1 , f) and Es'12(r1 , f) are given with
respect to the plane of the interface.

C. Scattered Field at the Entrance Pupil of the Lens
To determine the relationship between the field Es2 at the
entrance pupil and the field at the interface, we account
for the change in phase along each ray as it propagates in
free space from (r1 , f) on the interface to (r2 , f) on the
entrance pupil and account for changes in magnification.
Because the fields to be propagated are not yet in the far
zone (see the end of Subsection 2A and Appendix B), the
change in phase is not strictly linear with respect to dis-
tance. Numerical computations, however, reveal that
treating the phase change as linear introduces an error in
the fields on the order of 0.1%.

The radial distance r2 on the entrance pupil is given by
(Fig. 3)

r2 5 z1 tan u 1 z2 tan b. (16)

The magnification m(u, b) of the bundle of rays with the
use of Eqs. (10), (12), and (16) with fixed z1 and z2 can be
expressed in terms of u and b as

m~u, b! 5
dr2

dr1
5 1 1 nf

z2 cos3 u

z1 cos3 b
. (17)

By analogy with the scattered field on the interface, the
field at the entrance pupil is

Es2~r2 , f! 5 Esi2~r2 , f!ûsi~b, f! 1 Es'2~r2 , f!ûs'~ f!,
(18a)

where the coefficients Esi2(r2 , f) and Es'(r2 , f) are
given by

Esi2~r2 , f! 5 cs12Esi11 5 cs12t i S i Eii~ f!, (18b)

Es'2~r2 , f! 5 cs12Es'11 5 cs12t'S'Ei'~ f!, (18c)

with

cs12 5
1

m~u, b!
~exp ik0!@~r2 2 r1!2 1 z2

2#1/2, (18d)

where k0 is the free-space wave number.

D. Scattered Field at the Exit Pupil of the Lens
In a high-NA lens, the precise transformation of the field
from the entrance pupil to the exit pupil requires a de-
tailed model of the lens, which is generally unavailable.
Therefore simplifying assumptions must be made about
the behavior of the lens.22 We will proceed by making
the assumption that the imaging lens in our model trans-
forms a diverging spherical wave with radius of curvature
zO at the entrance pupil into a converging spherical wave
with radius of curvature zI . Also, we model the lens as
diffraction limited and aplanatic. Therefore the lens im-
parts a phase transformation, a scaling, and a rotation of
polarization.23

To determine the effect of the lens, we construe each
ray at the entrance pupil as being part of a diverging
spherical wave with a radius of curvature determined by
the angle b of the ray with respect to the optical axis.
The effective radius of curvature at the entrance pupil is
the quantity zO 5 r2 tan b (Fig. 3). The variation of the
radius of curvature with the distance r2 is a consequence
of the spherical aberration introduced by the interface; in
the absence of the interface, the radius of curvature
would be constant at all points on the entrance pupil.
The effective radius of curvature of the corresponding ray
leaving the exit pupil, zI , is given by the lens formula

zI 5
zOf

zO 2 f
, (19)

where f is the focal length of the lens. Using Abbe’s sine
condition,21 we obtain

zI sin gs 5 zO sin b, (20)

where gs is the angle at which the ray leaving the exit pu-
pil approaches the geometrical focus (Fig. 3). A ray en-
tering the lens at a distance from the optical axis of r2
will exit at r3 , where

r3 5
cos b

cos gs
r2 . (21)

The scaling for the field amplitude of the aplanatic lens
is24 (cos gs /cos b)1/2.

The polarization rotation upon passage through the
lens is analogous to that which occurred at the interface.
The parallel component of the scattered field will be ro-
tated from the ûsi(b, f) direction to the ûsi(p 2 gs , f)
direction, but the direction of the perpendicular compo-
nent remains unchanged. The angle p 2 gs has been
used because gs is measured with respect to the 2ûz di-
rection (Fig. 3).

Therefore the scattered field on the exit pupil becomes

Es3~r3 , f! 5 Esi3~r3 , f!ûsi~p 2 gs , f!

1 Es'3~r3 , f!ûs'~ f!, (22a)

where the coefficients Esi3(r3 , f) and Es'3(r3 , f) are
given by

Esi3~r3 , f! 5 cs23Esi2~r2 , f! 5 cs23cs12t iS iEii~ f!,
(22b)

Es'3~r3 , f! 5 cs23Es'2~r2 , f! 5 cs23cs12t'S'Ei'~ f!,
(22c)

with

cs23 5 S cos gs

cos b
D 1/2

exp ik0@zO 2 ~r2
2 1 zO

2!1/2#

3 exp ik0@zI 2 ~r3
2 1 zI

2!1/2#. (22d)

The two phase factors represent the incremental phase
from the object and image sides of the lens, respectively.25

If necessary, the effect of lens aberrations could be mod-
eled as an additional phase factor.

E. Incident Field at the Exit Pupil of the Lens
The propagation of the incident field Ei to the exit pupil is
computed by a method similar to that of propagation of
the scattered field Es . Because the incident illumination
is planar and polarized perpendicularly to the optical
axis, the direction of propagation before the lens is re-
stricted to the optical axis and the algebra is simplified.
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The incident electric field Ei12 at the fluid side of the
interface (Fig. 4) is

Ei12 5 E0c i01ûx , (23a)

where

c i01 5 exp ikz1 . (23b)

On the air side of the interface, the incident field becomes

Ei11 5 tEi12 5 E0tc i01ûx , (24a)

where t is the Fresnel coefficient21

t 5
2nf

1 1 nf
. (24b)

The field Ei11 will propagate the distance z2 (in air) to the
entrance pupil and accumulate an additional phase term.
At the entrance pupil, the field becomes

Ei2 5 c i12Ei11 5 E0c i12tc i01ûx , (25a)

where

c i12 5 exp ik0z2 . (25b)

Expressed in terms of ûii( f) and ûi'( f), Ei2 becomes

Ei2~r2 , f! 5 Eii2~ f!ûii~ f! 1 Ei'2~ f!ûi'~ f!, (26a)

where the coefficients Eii2( f) and Ei'2( f) are

Eii2~ f! 5 c i12tc i01Eii~ f!, (26b)

Ei'2~ f! 5 c i12tc i01Ei'~ f!. (26c)

After passing through the lens, the plane wave becomes
a converging spherical wave with radius f. By analogy
with the scattered wave, there is a phase transformation,
a scaling, and a polarization rotation. The transforma-
tion of the plane wave is a limiting case of Eqs. (22), with
cos b 5 1. In this limit, the ray leaving the exit pupil at
(r3 , f) makes an angle of g i with the optical axis:

g i 5 sin21~r3 /f !. (27)

The polarization rotation of the parallel component of
the incident wave upon passage through the lens is given
by replacing ûii( f) with ûsi(p 2 g i , f). As above, the
perpendicular component remains unchanged. From
Eqs. (4b), (6b), and (6c), ûi'( f) is identical to ûs'( f).
Thus, after propagation to the exit pupil, the incident
field Ei3 is

Ei3~r3 , f! 5 Eii3~r3 , f!ûsi~p 2 g i , f!

1 Ei'3~r3 , f!ûs'~ f!, (28a)

Fig. 4. Propagation of the incident field to the image plane.
where the coefficients Eii3(r3 , f) and Ei'3(r3 , f) are
given by

Eii3~r3 , f! 5 c i23Eii2~ f! 5 c i23c i12tc i01Eii~ f!,
(28b)

Ei'3~r3 , f! 5 c i23Ei'2~ f! 5 c i23c i12tc i01Ei'~ f!,
(28c)

with

c i23 5 Acos g i exp ik0@ f 2 ~r3
2 1 f 2!1/2#. (28d)

F. Determination of the Field at the Image Plane
A two-dimensional diffraction calculation is used to
propagate the total field E3 (the superposition of the inci-
dent and scattered fields) from the exit pupil to the detec-
tor plane:

E3~r3 , f! 5 Es3~r3 , f! 1 Ei3~r3 , f! (29a)

5 Eii3~r3 , f!ûsi~p 2 g i , f!

1 Esi3~r3 , f!ûsi~p 2 gs , f!

1 @Ei'3~r3 , f! 1 Es'3~r3 , f!#ûs'~ f!.
(29b)

To determine the irradiance distribution at a planar
detector that is normal to the optical axis and located at a
distance z4 from the exit pupil, we must compute a vector
diffraction integral over the exit pupil. This diffraction
integral may be simplified by using a vector Kirchhoff ap-
proximation. That is, each Cartesian component of the
field is individually subjected to a scalar diffraction calcu-
lation. With an inconsequential constant phase factor
omitted, the field on the image plane is given by the
Fresnel integral25

E4~r4 , a! 5
1

lz4
expS pi

lz4
r4

2D
3 E

0

AE
0

2p

Wm~r3!E3~r3 , f!expS pi

lz4
r3

2D
3 expF2pi

lz4
r4r3 cos~ f 2 a!Gr3dfdr3 ,

(30)

where A is the radius of the exit pupil and (r4 , a) are po-
lar coordinates on the image plane. Equation (30) also
contains a windowing function Wm(r3) to attenuate Gibbs
ringing from the edge of the lens:

Wm~r3! 5 H 1 r3 < mA

1

2 F1 1 cos
~r3 2 mA !p

~1 2 m!A G mA , r3 < A
.

(31)

As shown in Appendix C [Eq. (C10)], the normalized ir-
radiance on the image plane determined from the Poyn-
ting vector is

I~r4 , a! 5 uE4
0~r4!u2 1 uE4

2~r4!u2

1 2 Re$E4
0~r4!@E4

2~r4!#* cos 2a%, (32)
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where the coefficients E4
0 and E4

2 are given in Eqs. (C7).
Equation (32) represents the transformation of the
x-polarized incident field by all of the elements of our
model. If the incident illumination is an unpolarized
plane wave, then the irradiance on the detector may be
determined from Eqs. (C7):

Iunpolarized~r4! 5
1

2p
E

0

2p

I~r4 , a!da

5 uE4
0~r4!u2 1 uE4

2~r4!u2. (33)

G. Numerical Implementation
In this subsection we discuss the issues that arise in the
numerical computation of the irradiance I(r4 ,a). The
three integrals in Eq. (C7b) have integrands that are
highly oscillatory, and special attention must be paid to
ensure that the integral is computed accurately.26 To
avoid a loss of precision, one must make the grid at the
exit pupil dense enough to sample even the most highly
oscillatory regions. Because this region and the maxi-
mum frequency of oscillation depends on the value of r4
at which these integrals are being evaluated, an efficient
method would be to use an adaptive sampling algorithm.
Instead, a simpler, regular sampling of r3 was chosen to
be dense enough to handle the highest oscillations that
can appear for any value of r4 . The penalty for this sim-
pler approach is slower execution times.

For each sample point r3 on the exit pupil, the quanti-
ties E3

0(r3) and E3
2(r3) given in Eqs. (C5) must be evalu-

ated. To compute the contribution from the incident
wave, we must compute g. With the use of Eqs. (27) and
(28), Ei3(r3) is immediately available. The computation
of Es3(r3) is more involved. The sample point r3 deter-
mines the ray required to propagate the scattered field
through the optical system. This computation requires
knowledge of the quantities r2 , r1 , gs , b, and u, which
are used to locate the ray. Equations (10), (12), (16), and
(21) uniquely determine all of these quantities. Al-
though it is possible to write down analytic expressions
for these variables in terms of r3 , such expressions are
complicated. Instead, an iterative procedure has been
adopted to numerically determine values for r2 , r1 , gs ,
b, and u consistent with the sample point r3 . After these
variables have been determined, the scattered fields can
be propagated to the exit pupil by using Eqs. (9), (14),
(18), and (22).

H. Summary of the Algorithm
Before comparing the numerical results with the observed
scattering, we briefly reiterate the algorithm.

1. Input the physical parameters describing the opti-
cal properties and the geometry (these parameters will be
discussed in Section 3).

2. Choose a regular grid on the exit pupil dense
enough to accurately perform the diffraction integrals.

3. For each grid point on the exit pupil, iteratively de-
termine the quantities r2 , r1 , gs , and b, thereby deter-
mining the grid points on the entrance pupil and on the
interface.

4. Compute the scattered fields on the fluid side of the
interface by using Mie’s formulas.
5. Propagate the scattered fields from the interface to
the exit pupil.

6. Sum the incident and scattered fields at the exit
pupil and numerically evaluate the diffraction integrals.
Compute the irradiance at each pixel in the detector
array.

3. EXPERIMENTAL METHOD
To test the model, we measured the scattering from a
spherical particle in a fluid medium at several distances
along the optical axis and compared it with numerical cal-
culations. Spherical polystyrene particles (Duke Scien-
tific Corp., catalog #252) with radius a 5 3.5 6 0.1 mm,
index of refraction np 5 1.5847, and density r
5 1.05 g/cm3 were contained in a thin channel. The
channel was formed from two 1.25-mm glass slides held
in a frame that had a machined spacer on the periphery;
the dimensions of the resulting chamber were 6 mm
3 48 mm 3 0.315 mm. The channel was filled from one
side through an inlet (a reservoir was connected on the
exit end) with immersion liquid (Cargille, Inc., index of
refraction nf 5 1.495, density r ' 0.88 g/cm3, and viscos-
ity m ' 27 cps); there was no transverse flow (and there-
fore no bulk transverse motion of the particle) when the
inlet and exit values were closed. The sample chamber
was placed horizontally on a translation stage of a
transmitted-light microscope (Zeiss, Jenapol Interphako)
equipped with a 253/0.5-NA infinity-corrected, planach-
romat objective with an 11-mm working distance. The
objective was used with the manufacturer-supplied com-
pensator for a 2-mm cover slide. The illuminating wave
front was produced by using the microscope’s Köhler
source with a notch filter; the condenser aperture was set
to 2 mm. The measured center wavelength for the filter
was l 5 525 nm with a full width at half-maximum of
85 nm. A high-density, digital CCD array (Photo-
metrics PXL 1400) with 1317 3 1035 pixels (each pixel is
6 mm3 6 mm with 100% fill factor) was mounted on the
photography port of the microscope. To increase the
magnification of the acquired image, we inserted a 103
eyepiece between the port and the CCD array. The dy-
namic range of the array was 12 bits, and it was cooled to
225 °C before acquiring images. A dark current image
was obtained and subsequently subtracted from all of the
images. The spatial resolution, determined by using an
optical reference standard (Geller Microanalytical, Inc.,
MRS-3), was approximately 8.5 pixels/mm.

Measuring the scattering patterns was a two-step pro-
cess. In the first step, a sphere was dislodged from the
top glass slide by applying a brief shear; the shear was
produced by opening the exit valve of the channel. After
cessation of the shear, the particle was observed to have
negligible transverse velocity, and it began to fall down-
ward (toward the illumination source). The particle’s
settling velocity was determined by measuring the change
in focus (at 1-min intervals) required to maintain a fixed
scattering pattern (nominally Gaussian best focus).

In the second step, the focus of the microscope was kept
fixed near the midpoint of the channel (approximately 150
mm from the fluid–air interface). Another particle was
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similarly dislodged from the top slide, and its position
along the optical axis varied because of settling. Eighty
images of the scattering from this particle were then ac-
quired at 15-s intervals without changing the focus of the
microscope. An initial estimate of the particle’s location
along the optical axis for each of the 80 patterns was de-
termined by using the estimate of the particle’s velocity
and initial position.

For a comparison of the numerical and experimental
results, initial estimates for the experimental parameters
were required. Although initial estimates for the param-
eters that govern the scattering were known to within ex-
perimental error, the absence of the complete design
specifications for the objective lens required simplifying
assumptions. For the Mie scattering calculations, the
relative index of refraction between the particle and the
fluid and the size parameter were taken to be n 5 1.06
and ka 5 62.622, respectively. The parameter z1 , which
represents the d 5 0 location of the numerical prediction,
was estimated to be z1 5 1.4 mm by adding the thickness
of the front wall of the channel (1.25 mm) to the estimate
of the focus position from the fluid–air interface (150 mm).
To numerically determine the effect of the objective, we
asked the manufacturer to supply the focal length of the
objective and the distance from the tube lens to the inter-
mediate image plane.3 These values, 25.1 mm and 245
mm, respectively, were used to estimate the object (zO)
and image (zI) distances, respectively. Additionally, the
numerical aperture was used to estimate the size of the
entrance pupil of the lens.
Fig. 5. Experimental and predicted scattering shown as a function of transverse distance on the detector plane at six values of d : (a)
225.70 mm, (b) 26.10 mm, (c) 22.50 mm, (d) 4.00 mm, (e) 114.9 mm, (f ) 122.1 mm.
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4. RESULTS
The settling velocity of the particle, measured in the first
step of the experimental procedure, 10.2 6 1.6 mm/min,
agreed with the Stokes velocity, which was predicted from
the sphere’s radius and the density difference between
the sphere and the fluid. With the use of this settling ve-
locity, it was possible to obtain an initial estimate for the
location of the sphere as a function of time.

Figure 5 shows both the measured and the predicted
intensity from a single particle at six different locations.
The solid curves are the numerically predicted scattering
patterns. As shown in Fig. 1, a positive distance d indi-
cates that the particle is further from the objective lens.
The axial distances d were 225.70 mm, 26.10 mm, 22.50
mm, 14.00 mm, 114.90 mm, and 122.10 mm, for Figs. 5(a),
5(b), 5(c), 5(d), 5(e), and 5(f ), respectively. The intensi-
ties are normalized with respect to the incident intensity
(the intensity far from the center of the particle), and the
transverse distances are normalized with respect to the
particle radius. Figure 6 shows three-dimensional plots
of (a) the experimental data and (b) the theoretical scat-
tering patterns as a function of distance along the optical
axis (d/a). The experimental data contain 39 datasets,
and the theoretical dataset contains 95 scattering calcu-
lations spaced at 1.0-mm intervals. To avoid an ex-
tremely dense plot, we display every other pixel in the
transverse direction. The parameters used for the nu-
merical calculations shown in Figs. 5 and 6 were

Fig. 6. (a) Experimental and (b) predicted scattering shown as a
function of particle position along the optical axis and transverse
distance on the detector plane.
np 5 1.585, nf 5 1.495, a 5 3.65 mm, l 5 510 nm, and a
distance z1 5 1.4 mm. In addition, a trial-and-error ap-
proach was used to determine the best value for the pa-
rameter m in Eq. (31); a value of 0.98 was used.

5. DISCUSSION
As indicated in Figs. 5 and 6, the model prediction shows
good agreement with experimental data. To calculate
the intensity for any value of d, the model requires the fol-
lowing parameters as inputs: (1) the radius of the par-
ticle, (2) the refractive index of the particle, (3) the refrac-
tive index of the medium, (4) the wavelength of the
illumination in the medium, (5) the distance of the par-
ticle to the fluid–air interface (zf 1 d), (6) the focal
length of the objective, (7) the distance from the tube lens
to the intermediate image, and (8) the numerical aperture
of the objective. To obtain the agreement between the
measured and numerically calculated data, we had to ad-
just the values for the experimental parameters from
their initial values. A possible explanation for the differ-
ence between the initial values and the best-fit size pa-
rameter (62.62 versus 67.23) is that the sphere may have
swelled in the oil medium; the manufacturer states that
the particles are National Institutes of Standards and
Technology traceable within an aqueous solution. The
sensitivity of the observed scattering with respect to per-
turbations in the input parameters will be reported in a
future publication, as will verification of these results at
higher numerical aperture.

For large radial distances from the particle center, the
discrepancy between prediction and experimental data in-
creases. We suspect that this may be due to the partially
coherent nature of the source and are investigating fur-
ther improvements to the model; these efforts include at-
tempts to model the effect of general rather than plane-
wave illumination.27 In spite of this discrepancy, it is
clear that the position of the particle along the optical
axis can be recovered from the experimental data. Fig-
ure 6 shows that as the scattering is asymmetric with re-
spect to Gaussian best focus, it is also possible to unam-
biguously determine the direction of the sphere’s
displacement.

6. CONCLUSIONS
We have developed an optical model to predict the scat-
tering pattern by using Mie scattering theory and image
theory. Our model calculates Mie scattering from the
particle on the fluid side of the interface, assuming plane-
wave illumination. This is typically valid for Köhler illu-
mination in a microscope. It also accounts for refraction
of the rays and transmission across the interface. In the
next step, the model calculates the propagation of the
field from the interface to the entrance pupil of the lens.
We model the imaging system as an infinity-corrected,
diffraction-limited lens. We do not use a paraxial (para-
bolic wave-front) approximation for the lens and therefore
are able to model imaging with high-NA objectives. Fi-
nally, our model calculates the intensity in the image
plane by using Fresnel diffraction of the field from the
exit pupil of the lens to the image plane of the detector.
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APPENDIX A: MIE FIELD
For the purposes of subsequent analysis, in this appendix
we describe the scattered Mie field at the interface. The
incident and scattered fields are expressed in terms of
vector spherical harmonics, which describe the radial and
angular dependence of the fields. We list, but do not de-
rive, the Mie scattering amplitudes resulting from inci-
dent x-polarized, planar illumination. The interested
reader is referred to Ref. 17 for the derivation.

The vector spherical wave functions Mo1l
( j) and Ne1l

( j) are
given with respect to the standard spherical coordinate
basis vectors by

Mo1l
~ j ! ~r, u, f! 5 cos f p l~u!zl

~ j !~r !ûu

2 sin f t l~u!zl
~ j !~r !ûf , (A1a)

Ne1l
~ j ! ~r, u, f! 5 cos f l~l 1 1 !sin u p l~u!

zl
~ j !~r !

r
ûr

1 cos f t l~u!
@rzl

~ j !~r !#8

r
ûu

2 sin f p l~u!
@rzl

~ j !~r !#8

r
ûf , (A1b)

where the angular functions p l and t l are defined by

p l~u! 5
1

sin u
Pl

1~cos u!, (A2a)

t l~u! 5
d

du
Pl

1~cos u!. (A2b)

Pl
1 denotes the associated Legendre function of the first

kind. The superscript ( j) selects the appropriate spheri-
cal Bessel function zl

(1)(r) 5 jl(r) or spherical Hankel
function zl

(3)(r) 5 hl
(1)(r) corresponding to, respectively,

standing and outward-traveling waves.
The incident x-polarized, planar wave of amplitude E0

and wave number k can be expressed in terms of vector
spherical wave functions as

Ei~r, u, f! 5 E0(
l51

`

El@Mo1l
~1 !~kr, u, f! 2 iNe1l

~1 ! ~kr, u, f!#,

(A3)

where

El 5 il
2l 1 1

l~l 1 1 !
. (A4)

The expression for the scattered field is given by17

Es~r, u, f! 5 E0(
l51

`

El@2blMo1l
~3 !~kr, u, f!

1 ialNe1l
~3 ! ~kr, u, f!#, (A5)

where the scattering coefficients al and bl are

al 5
nc l~nka !c8~ka ! 2 c l~ka !c8~nka !

nc l~nka !j8~ka ! 2 j l~ka !c8~nka !
, (A6a)
bl 5
c l~nka !c8~ka ! 2 nc l~ka !c8~nka !

c l~nka !j8~ka ! 2 nj l~ka !c8~nka !
. (A6b)

c l and j l are the Ricatti–Bessel functions, defined by

c l~r ! 5 rjl~r !, (A7a)

j l~r ! 5 rhl
~1 !~r !, (A7b)

and ka is the size parameter. Finally, n 5 np /nf is the
relative index of refraction between the particle and the
fluid.

Equation (A5) must be evaluated for points on the in-
terface. In Ref. 28 it is shown that when l . ka
1 4.3(ka)1/3, the scattering coefficients al and bl decay
very rapidly (Fig. 7), and that for numerical calculation
the series can be truncated at lc 5 ka 1 4.3(ka)1/3.
Therefore the expression for the scattered field becomes

Es~r, u, f! 5 E0(
l51

lc

El@2blMo1l
~3 !~kr, u, f!

1 ialNe1l
~3 ! ~kr, u, f!#. (A8)

APPENDIX B: FIELD APPROXIMATIONS
Commonly, two far-field approximations are applied to
Eq. (A8).17,19 First, it is assumed that the size of the ûr
(radial) component is on the order of 1/(kr) times that of
the two other transverse components of Es and that it can
be dropped. Second, it is assumed that kr is sufficiently
large such that the spherical Hankel functions appearing
in Mo1l

(1) and Ne1l
(1) can be replaced by decaying complex ex-

ponentials. (See Section 4.4.4 of Ref. 17, for example.) We
demonstrate that for the parameter values from the ex-
periment, only one of the two approximations, namely,
dropping the radial component of Es , is valid.

To estimate the error in dropping the ûr term, we must
compare the relative sizes of the radial and transverse

Fig. 7. Log plots for lc 5 85 of the coefficients ualu (s) and ublu (•)
for 1 < l < lc . The coefficients were evaluated by using the ex-
perimental parameters.
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components in Eq. (A1b). The asymptotic relations for
the spherical Hankel functions,29

hl
~1 !~kr ! ;

~2i !l exp ikr

ikr F1 1 i
l~l 1 1 !

2kr G , (B1a)

@hl
~1 !#8~kr ! ;

~2i !l exp ikr

kr F1 1 i
l~l 1 1 ! 1 1

2kr G , (B1b)

show that along any direction (fixed u and f), the ratio of
the magnitude of the radial component to the transverse
component behaves like c(u, f)/r as r gets large. To ob-
tain rigorous bounds on c(u, f), one must evaluate
asymptotic expressions for the functions p l(u) and t l(u).
Rather than follow this complicated analytic approach,
we have chosen to numerically verify that the radial com-
ponent is indeed small with respect to the transverse
components. To show this, we computed the ratio of the
magnitudes of the radial and transverse components at
each point on the fluid side of the interface (Fig. 8). Be-
cause the magnitude of the radial component of Es is no
more than 0.25% of that of the transverse components, its
contribution to the Poynting vector is negligible.

With the omission of the radial component, Eqs. (A1)
and (A8) together give

Es 5 E0(
l51

lc

ElH 2blp l~u!hl
~1 !~kr !

1 ialt l~u!
@krhl

~1 !~kr !#8

kr J cos f ûu

1 ElH blt l~u!hl
~1 !~kr !

2 ialp l~u!
@krhl

~1 !~kr !#8

kr J sin u ûf . (B2)

This can be rewritten as Eqs. (8) and (9) with

S i~r, u! 5 E0(
l51

lc

ElH 2blp l~u!hl
~1 !~kr !

1 ialt l~u!
@krhl

~1 !~kr !#8

kr J , (B3a)

S'~r, u! 5 E0(
l51

lc

ElH blp l~u!hl
~1 !~kr !

2 ialp l~u!
@krhl

~1 !~kr !#8

kr J . (B3b)

For many experimental realizations of this model, the
interface will be too close for the second approximation to
be applicable. This common approximation (which is ap-
plicable when kr @ l2) takes only the first term in rela-
tions (B1). Because the size of the last term in an
asymptotic expansion provides an estimate of the size of
the error when the series is truncated just before that
term, the validity of the approximation requires that the
second term must be small compared with unity. The
quantities corresponding to the experiment described in
Section 4 are k 5 1.8418 3 107 m21, ka ' 67, lc 5 85,
and z1 ' 1.6 3 1023 m. Thus the smallest value kr for
the radial argument of the spherical wave functions is
kz1 ' 29,469. For this kr the second term in the braces
in Eqs. (B1) is approximately 3655/29,469 ' 0.124. Thus
we obtain a worst-case estimate of 12.4% for the error in
using only the first term of the asymptotic series in the
summands of Eq. (A8). Because the Hankel functions
are multiplied by the scattering coefficients, however, the
largest error in the summand, attained for l 5 65, is on
the order of 7% (Fig. 9). As a check, if kr @ lc

2 such that
the spherical Hankel functions may be approximated by
decaying exponentials, Eqs. (B3) yield the far-field scat-
tering coefficients.

APPENDIX C: IMAGE FORMATION
In this appendix we will derive the expression for the ir-
radiance at the detector, I(r4 , a). In particular, we will

Fig. 8. Ratio of the magnitudes of the radial and transverse
components of the scattered field, iEs • ûri /iEs 2 Es • ûri ,
evaluated at the interface, plotted as a function of sin b. The pa-
rameters used correspond to experimental values.

Fig. 9. Relative error in bl (1 2 $(2i) l@exp(ikr)/(ikr)#%/
@hl

(1)(kr)#) plotted as a function of l at the interface along the op-
tical axis. The parameters used correspond to experimental val-
ues.
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give expressions for the coefficients E4
0, E4

1, and E4
2 that

appear in Eq. (32). Because we assumed that the normal
to the detector was parallel to the z axis, an evaluation of
the Poynting vector is most easily evaluated by express-
ing all the fields in terms of Cartesian basis vectors.

The coefficients for the incident and scattered fields af-
ter propagation to the exit pupil, Eqs. (22) and (28), were
expressed in terms of the incident wave. It may be ob-
served that the f dependence appears on the right-hand
side of these equations only in Eii( f) and Ei'( f).
Therefore these equations are separable in r3 and f.
Collecting together in Tsi3(r3), Ts'3(r3), Tii3(r3), and
Ti'3(r3) the terms from Eqs. (22) and (28) that do not de-
pend on f, we obtain

Esi3~r3 , f! 5 Tsi3~r3!cos f, (C1a)

Es'3~r3 , f! 5 2Ts'3~r3!sin f, (C1b)

Eii3~r3 , f! 5 Tii3~r3!cos f, (C1c)

Ei'3~r3 , f! 5 2Ti'3~r3!sin f. (C1d)

From Eq. (6b),

ûsi~p 2 g, f! 5 2cos g cos f ûx 1 cos g sin f ûy

2 sin g ûz , (C2a)

ûs'~ f! 5 2sin f ûx 1 cos f ûy , (C2b)

where g represents either g i or gs . Using the notation of
Eqs. (C1) with Eqs. (29), we may express E3 in terms of
the Cartesian basis vectors as

E3~r3 , f! 5 ûx$@2Tsi3~r3!cos gs 2 Tii3~r3!cos g i#cos2 f

1 @Ts'3~r3! 1 Ti'3~r3!#sin2 f%

1 ûy$@2Tsi3~r3!cos gs

2 Tii3~r3!cos g i#cos f sin f

2 @Ts'3~r3! 1 Ti'3~r3!#sin f cos f%

1 ûz$@2Tsi3~r3!sin gs

2 Tii3~r3!sin g i#cos f%. (C3)

We apply the trigonometric double-angle formulas to ob-
tain

E3~r3 , f! 5 ûx(
1
2 $@2Tsi3~r3!cos gs 2 Tii3~r3!cos g i#

1 @Ts'3~r3! 1 Ti'3~r3!#%

1
1
2 $@2Tsi3~r3!cos gs 2 Tii3~r3!cos g i#

2 @Ts'3~r3! 1 Ti'3~r3!#%cos 2f)

1 ûy(
1
2 $@2Tsi3~r3!cos gs 2 Tii3~r3!cos g i#

2 @Ts'3~r3! 1 Ti'3~r3!#%sin 2f)

1 ûz$@2Tsi3~r3!sin gs

2 Tii3~r3!sin g i#cos f%. (C4)

The total field may be expressed by using the compact no-
tation
E3~r3 , f! 5 @E3
0~r3! 1 E3

2~r3!cos 2f#ûx

1 @E3
2~r3!sin 2f#ûy 1 @E3

1~r3!cos f#ûz ,

(C5a)

where

E3
0~r3! 5

1
2 $@2Tsi3~r3!cos gs 2 Tii3~r3!cos g i#

1 @Ts'3~r3! 1 Ti'3~r3!#%, (C5b)

E3
1~r3! 5 2Tsi3~r3!sin gs 2 Tii3~r3!sin g i , (C5c)

E3
2~r3! 5

1
2 $@2Tsi3~r3!cos gs 2 Tii3~r3!cos g i#

2 @Ts'3~r3! 1 Ti'3~r3!#%. (C5d)

As a result of the simple form of the f dependence of
Eqs. (C5), the inner integral of Eq. (30) can be determined
analytically by using29

Jp~r! 5
i2p

p
E

0

p

exp~ir cos f!cos pf df. (C6)

Therefore Eq. (30) reduces to the compact form

E4~r4 , a! 5 @E4
0~r4! 1 E4

2~r4!cos 2a#ûx

1 @E4
2~r4!sin 2a#ûy 1 @E4

1~r4!cos a#ûz ,

(C7a)

where the coefficients E4
p(r4), for p 5 0,1,2, are given by

E4
p~r4! 5 ip

p

lz4
expS pi

lz4
r4

2D E
0

A

Wm~r3!

3 expS pi

lz4
r3

2DJpS pr4r3

lz4
DE3

r~r3!r3dr3 .

(C7b)

Because the detector at the image plane is oriented nor-
mally to the optical axis, a determination of the Poynting
vector at the image plane does not require a computation
of the ûz component; it is included, however, for complete-
ness. Therefore the irradiance is

I~r4 , a! 5 uE4xu2 1 uE4yu2 (C8)

5 uE4
0~r4! 1 E4

2~r4!cos 2au2 1 uE4
2~r4!sin 2au2

(C9)

5 uE4
0~r4!u2 1 uE4

2~r4!u2

1 2 Re$E4
0~r4!@E4

2~r4!#* %cos 2a. (C10)
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