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Imaging without genetically expressed probes
Glycans coating the surface of archaea, bacteria and

eukaryotes have attracted significant attention of chemists

and biologists in this Post-Genome Era. These biomacro-

molecules are not directly encoded in the genome, and the

non-template driven, posttranslational modification pre-

sents grand challenges to the study of their molecular

functions in native environments [1]. Development of

bioorthogonal chemistry has provided a paradigm shifting

solution enabling novel approaches to unravel the dynam-

ic complexity of glycosylation. The term bioorthogonal

was introduced into the published literature in 2003 by

C.R. Bertozzi [2], to refer to reactions that neither interact

nor interfere with the cell’s biochemistry [3–5]. Installing a

probe on glycans with a two-step bioorthogonal chemical

reporter strategy requires the introduction of a reporter

into cellular glycans and a chemical reaction that forms a

stable covalent linkage between the reporter and the

probe molecule. In addition to the requirement that the

reaction is essentially not toxic, the reaction rate needs to

be fast enough (in the biological milieu) in order to capture

the kinetics of the cellular processes of interest. Several

reactions have proven to be bioorthogonal [6]. Two of the

earliest reactions introduced by the Bertozzi group are the

Staudinger ligation [3] and ‘copper-free click chemistry’

which is a 1,3-dipolar cycloaddition between azides and

cyclooctynes (strain-promoted azide-alkyne cycloaddition

(SPAAC)) [7,8�]. More recently, it has been shown that the

ligand-accelerated CuAAC (Cu(I)-catalyzed azide alkyne

cycloaddition) can be exploited as a bioorthogonal reaction

[6,9,10,11��].

Two broad approaches incorporate the principles of a

bioorthogonal chemical reporter strategy. The metabolic

oligosaccharide engineering approach, exploits the meta-

bolic replacement of a monosaccharide by modified sugar

analogues [12], while the chemoenzymatic glycan label-

ing (CeGL) exploits a recombinant glycosyltransferase to

transfer a mono-saccharide analogue from a nucleotide

sugar donor to a specific glycan acceptor [13�]. In this

short review, we highlight several recent innovative

applications of these two approaches to imaging glycans

on single cells and tissues, rather than presenting a

chronological list of the many outstanding imaging

advances (e.g. [8�,14,15]). Although the focus here is

the application of these approaches to imaging surface

glycans, the recent tagging of intracellular carbohydrates

in living cells [16] and the use of a bioorthogonal reporter

strategy for Raman imaging [17�], suggests that these

approaches have a bright future. The recently reported

MRI imaging of glycosylated tissue in live mice using

metabolic labeling and a bioorthogonal gadolinium based

probe [18], suggests that we can anticipate correlated

optical and MRI imaging of glycans in live animals.

Unlike super-resolution imaging with genetically

expressed probes, imaging the dynamics of biological

processes with bioorthogonal chemical reporter strategies

is fundamentally limited by the second-order rate con-

stants associated with the bioorthogonal reaction [6,19–
21]. The Staudinger ligation (with rate constants in the

range of 10�4 to 10�2 M�1 s�1) and SPAAC (with rate

constants in the range of 10�2 to 1 M�1 s�1) are an order of

magnitude slower than CuAAC reactions (with rate con-

stants greater than 101 to 102 M�1 s�1). Fortunately, older

reactions continue to learn new tricks. For example, Wu’s

group has demonstrated that the introduction of an elec-

tron-donating picolyl azide combined with tris(triazolyl-

methyl)-amine-based ligand for Cu(I) (BTTPS) produced

at least a 20-fold enhancement of CuAAC fluorescent

labeling (with 1 nM concentration of metabolic precursor);

this accelerated reaction enabled confirmation that the

conversion rate of a monosaccharide building block into a

cell-surface glycoconjugate is of order minutes [22��].

Imaging an ensemble of glycans in live cells
Studies using fluorescent recovery after photobleaching

(FRAP) imaging of an ensemble of antibody labeled

glycoproteins in the 1980s and early 1990s demonstrated

that the extent of glycosylation and the size of the

extracellular domain limit translational diffusion

[23,24]. Q3Attempts to understand and model how barriers

in the cytoplasm, membrane bilayer and the external

space separately restrict the translational (lateral) mo-

bility of transmembrane proteins, showed that the dif-

fusion of transmembrane glycoproteins was constrained

as compared with the relatively free movement of

glycosylphosphatidylinositols (GPI) proteins (typically
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glycolipids diffuse 3 times the distance of transmem-

brane proteins before experiencing a barrier) [25]. FRAP

measurements by Edidin’s group using class I MHC

molecules revealed that mutants with reduced N-linked

glycans have increased lateral diffusion as compared

with wild-type and that a large mobile fraction of dif-

fusing glycoproteins enabled bleached regions to be-

come repopulated with fluorescent molecules [24]. In

contrast to these pioneering studies, contemporary

FRAP imaging of the dynamics of glycolipids within

the cell envelope of mycobacterial membranes

exploits the power of metabolically incorporated analo-

gues [26].

Ensemble measurements of metabolically labeled gly-

cans, co-labeled with a site specific protein tag, enabled

Lin et al. to apply Fouml;rster resonance energy transfer

(FRET) imaging to specific glycoproteins in live cells

[27]. Using the enzyme-catalyzed probe ligation method,

based upon lipoic acid ligase (LplA), developed by Ting’s

group [28], a FRET donor was installed on an extracellular

terminus of a protein of interest. As shown in Figure 1a,

2 Molecular imaging
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Fouml;rster resonance energy transfer microscopy (FRET) of glycoproteins in live cells. (a) Bioorthogonal labeling in cells expressing a protein

fused with LAP at the N-termini and incubated with Ac4ManNAl. The FRET acceptor dye molecule (Alexa Fluor 647) using CuAAC assisted by

BTTAA. Subsequently, LAP was conjugated with the lipoic acid-picolyl azide derivative using W37VLplA and followed by reaction with the FRET

donor (Alexa Fluor 488-alkyne). Adapted from Lin et al. [27]. (b) FRET efficiency calculated using acceptor photobleaching in live HEK 293T cells

expressing LAP-aXb2 integrins. Scale bar = 10 mm. Adapted from Lin et al. [27]. (c) Fab fragment targeting moiety used to place the donor

fluorophore (Fab-594) as combined with metabolic labeling with Ac4ManNAz to introduce the acceptor cyclooctyne-fluorophore (DIBAC-647) via a

bioorthogonal reaction. Adapted from Belardi et al. [29]. (d) Two-photon microscopy employing time correlated single photon counting to measure

FRET with fluorescence lifetimes using a Fab fragment to install a fluorescent donor (Alexa Fluor 594) on the glycoprotein backbone and metabolic

labeling with Ac4ManNAz to place an acceptor on integrins. Scale bar = 50 mm. Adapted from Belardi et al. [29].
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following metabolic incorporation with an alkyne reporter

(e.g. Ac4ManNAl labeled sialic acid) into cell-surface

sialylated glycans, an Alexa fluor-azide was installed as

a FRET acceptor using CuAAC assisted by BTTAA.

Subsequently, LplA Acceptor Peptide (LAP) was conju-

gated with a lipoic acid-picolyl azide derivative followed

by reaction with Alexa fluor-alkyne as the FRET donor.

Figure 1b shows the FRET efficiency calculated using

acceptor photobleaching in live HEK 293T cells expres-

sing LAP-aXb2 integrins. Because this method yielded

relatively high levels of FRET (�50%), Lin et al. were

able to apply the approach to elucidate the role of sialyla-

tion in the activation of aXb2 integrins [27]. Following

confirmation using FRET imaging that the fluorinated

sialic acid analogue 3Fax-Neu5Ac effectively inhibited the

sialylation of aXb2 integrins, they showed that the removal

of sialic acids impaired aXb2 integrin activation. They also

demonstrated FRET imaging of glycosylated receptors

such as sialylated glycans of epidermal growth factor

receptor (EGFR).

An alternative approach to implementing intensity based

FRET measurements on a specific glycoprotein, Belardi

et al. employed time correlated single photon counting

with two-photon microscopy to measure fluorescence

lifetimes [29]. After confirming that aVb3 integrin in

U87MG cells is sialylated with a2,3-linked residues, they

used a Fab fragment to install a fluorescent donor (Alexa

Fluor 594) on the glycoprotein backbone and metabolic

labeling with Ac4ManNAz to place an acceptor on integ-

rin SiaNAz residues (Figure 1c). The measured lifetimes

from FRET on aVb3 integrins in U87MG cells cultured

with Ac4ManNAz is shown in Figure 1d. Histograms of

the fluorescence lifetimes indicate that FRET reduced

the lifetime of FAB-594 from 3.09 ns, in vitro, to an

average of 2.60 ns in Ac4ManNAz tagged cells. They also

confirmed that sialidase cleavage of SiaNAz residues

essentially eliminated FRET.

Single molecule tracking and super-resolution
With the explosion of single molecule tracking and super-

resolution imaging of proteins (genetically encoded with

photo-activatible fluorescent proteins or labeled with

quantum dots or dye molecules), the extension of these

approaches to glycoproteins was inevitable. Super-reso-

lution imaging of glycans was demonstrated by two

groups who published within a several month span in

2014 using stochastic optical reconstruction microscopy

(STORM) on live [30,31��] and fixed cells [32��]. One of

these two groups also implemented single particle track-

ing to follow glycans metabolically labeled with dye

molecules (using biocompatible BTTPS/CuI catalyst)

[30,31��]. Tracking of O-linked and N-linked sialylated

proteins metabolically labeled with Ac4GalNAz and

Ac4ManNAl, respectively, and tagged with dyes on can-

cer cells revealed constrained diffusion which was mod-

eled as damped Brownian motion resulting from a

confining harmonic potential [31��]. The slower diffusion

of glycans on cells with higher metastatic potentials was

conjectured to be caused by increased crowding of surface

glycoproteins which could effect the formation of adhe-

sions to the extracellular matrix [33].

An example of a ‘snapshot’ of the distribution of diffusing

Alexa Fluor 647 dye molecules tagged to N-linked sialic

acids on the surface of a live cancer cell is shown in

Figure 2a (scale bar = 20 mm). Figure 2b shows a STORM

image of N-linked sialic acid in HeLa cells metabolically

labeled with Ac4ManNAl and conjugated with Alexa

Fluor 647 azide (scale bar = 10 mm) [31��]. Figure 2c

and d show STORM images of a fixed human osteosar-

coma (U2OS) cell metabolically labeled with Ac4GalNAz

and clicked with (c) CuAAC and (d) SPAAC [34] (boxed

region = 2.0 mm wide). These super-resolution images

highlight membrane nanotubes and adhesive filaments.

Tissue and whole-animal imaging
On a larger spatial scale, chemoenzymatic labeling pro-

tocols have demonstrated that it is possible to obtain

images of tissue with glycan labeling that augments

histological hematoxylin and eosin staining. In order to

emphasize the capabilities of the approach, Rouhanifard,

Lopez-Aguilar and Wu refer to this as: ‘chemoenzymatic

labeling histology method using clickable probes’

(CHoMP) [35��]. Figure 3a and b shows the results of

this chemoenzymatic approach with LacNAc labeling of

lung tissue obtained from a fixed/frozen 10 mm mouse

tissue section [35��]. This group also applied this method

to other tumor tissue and to screening human tumor

microarrays, where it was observed that a there was a

large,13-fold decrease in LacNAc expression in grade

1 lung adenocarcinoma patient samples as compared with

healthy humans.

Bioorthogonal labeling of several organ systems in living

animals (e.g. heart, liver and kidney) has recently been

expanded to include sialyated glycans in the brain of live

mice using intravenous injection of PEGylated liposomes

encapsulating 9AzSia or ManNAz that were able to cross

the blood brain barrier [36��]. Because this liposome-

assisted bioorthogonal reporter (LABOR) strategy can

also be combined with histological staining, it is possible

to relate the spatial distribution of sialyated glycans to

features such as synaptic density.

Figure 3c and d shows labeling that was achieved with

LABOR strategy using 9AzSia coupled with in vivo cop-

per-free click chemistry. These confocal images delineate

the distribution of 9AzSia-incorporated sialoglycans in the

granule cell layer of dentate gyrus in the hippocampus.

Using 10 mm thick sections with glycan labeling and co-

immunostaining using synaptophysin and DAPI, multi-

colored images highlight the biosynthesis and distribu-

tion of sialic acids on cell surfaces and synapses (as labeled
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with synaptophysin) and a marker for astrocytes glial

fibrillary acidic protein (GFAP).

Since the chemical reporter strategy was first applied to

image surface glycans in developing zebrafish a decade

ago [38], this model organism has remained the subject for

advances in bioorthogonal chemistry which seek to over-

come the limitations of imaging internal structures with

exogenous probes. In order to prevent the high back-

ground fluorescence from unreacted probe, which can

dominate glycan imaging in the transparent zebrafish,

Bertozzi’s group developed an alternative approach

exploiting the direct injection of a cyclooctyne-function-

alized sialic acid followed by subsequent injection of an

turn-on tetrazine probe [37�]; using this approach, they

were able to demonstrate new sialylated structures in the

developing zebrafish.

Although not as efficiently incorporated as Ac4ManNAz,

microinjection of a bicyclononyne-functionalized sialic

acid derivative, BCNSia, followed by injection of a fluoro-

genic cyclooctyne-reactive probe enabled imaging of

zebrafish embryogenesis, with minimal background fluo-

rescence. Agarwal et al. demonstrated that prior to the

copper click chemistry reaction, the new probe produced

minimal background fluorescence, but robust SiaNAl-

dependent labeling of enveloping layer cells following

reaction [37�]. Figure 3e shows their approach to labeling

with BCNSia and 4 and images from (f and g) embryos

injected with BCNSia (and fluorogenic probe CalFluor

4 Molecular imaging
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Single molecule tracking and STORM imaging. (a) Snapshot of Alexa Fluor 647 molecules on N-linked sialic acid in a live metastatic cell using

TIRFM. Scale bar = 20 mm. Adapted from Jiang et al. [30]. (b) STORM imaging of sialic acid on live HeLa cells, metabolically labeled with

Ac4ManNAl and conjugated with Alexa Fluor 647 azide using BTTPS/CuI catalyst. The image was produced from 480 consecutive frames with

130021 detected deviation equal to the localization precision. The color bar represents the integrated fluorescent intensity of each molecule. Scale

bar = 10 mm. Adapted from Jiang et al. [30]. (c) STORM image obtained from fixed human osteosarcoma (U2OS) cells metabolically labeled with

Ac4GalNAz and clicked with CuAAC. Adpated from Mateos-Gil et al. [34]. (d) STORM image obtained from U2OS cells metabolically labeled with

Ac4GalNAz using copper-free strain-promoted azide-alkyne cycloaddition. Adapted from Mateos-Gil et al. [34] (boxed region = 2.0 mm wide).
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647 to map the vasculature). Figure 3h and j shows lateral

views of labeled hindbrain and absence of labeling with

injection of vehicle, Figure 3i.

Perspectives and conclusions
The applications presented in this review demonstrate

that the leading microscopic methods, which have

revolutionized the study of proteins in living systems,

can be adapted to imaging glycans on single cells and

tissues. Bioorthogonal chemical reporter strategies, using

metabolic oligosaccharide engineering and CeGL, have

enabled the application of FRAP, single molecule track-

ing and super-resolution imaging. This strategy, when

combined with genetically encoded probes, has made it
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Tissue and whole animal imaging. (a and b) Chemoenzymatic labeling using clickable probes (CHoMP) applied to LacNAc labeling of lung tissue

obtained from a fixed/frozen 10 mm mouse tissue section (Green: LacNAc staining; Blue: DAPI nuclear staining) Adapted from Rouhanifard

et al. [35��]. (c and d) Liposome-assisted bioorthogonal reporter (LABOR) strategy used to label sialylated glycans in the dentate gyrus in mouse

hippocampus with an azido sialic acid reporter molecule and copper-free click chemistry. Confocal images obtained from 10 mm thick sections

with immunostaining using synaptophysin, DAPI and the marker for astrocytes, glial fibrillary acidic protein (GFAP). Adapted from Xie et al. [36��].

(e) Schema for sialylation imaging in live Zebrafish embryos with BCNSia and injection with 4. Adapted from Agarwal et al. [37�]. (f and g)

Brightfield and embryo injected with BCNSia at the 1–8 cell stage and injected with 4 and bathed in a copper click solution with CalFluor

647. Adapted from Agarwal et al. [37�]. (h–j) Zebrafish lateral view of hindbrain, (i) injections with vehicle. Scale bar = 100 mm. Adapted from

Agarwal et al. [37�].
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possible to visualize glycans on a specific protein

via FRET and FLIM. Furthermore, it has now been

demonstrated that neither the blood brain barrier nor

the enveloping layer prevents in vivo imaging of sialylated

glycans. In the not too distant future, there will be many

examples of application of these new techniques to

characterize glycosylation changes associated with animal

models of human disease and on human samples.
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